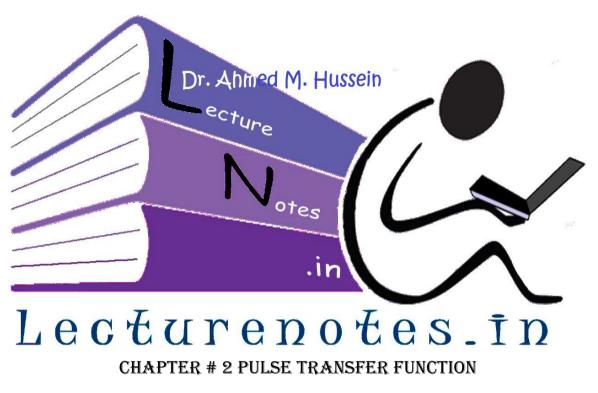


Electrical Engineering Department Dr. Ahmed Mustafa Hussein



After completing this chapter, the students will be able to:

- Obtain the open-loop transfer function for digital control systems,
- Obtain the closed-loop transfer function for digital control systems,

1. Pulse Transfer Function for Open-Loop Systems

In continuous control systems, which represented in S-domain as shown in Fig. 1, the transfer function can be obtained as:

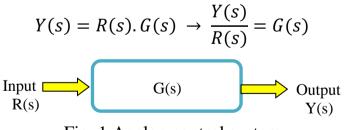


Fig. 1 Analog control system

If the input signal R(s) is sampled, it becomes $R(s)^*$ or R(z). Also, If the output signal Y(s) is sampled, it becomes $Y(s)^*$ or Y(z). Therefore, the plant G(s) is only defined at sampling instants only, this means it becomes sampled $G(s)^*$ or G(z). The block diagram of such system is shown in Fig. (2).

Electrical Engineering Department Dr. Ahmed Mustafa Hussein

Fig. 2 Digital control system

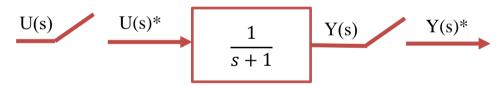
In that case the value of Y(z)/R(z) is called the transfer function of digital control system or Pulse Transfer Function as given below.

$$Y(z) = R(z).G(z) \rightarrow \frac{Y(z)}{R(z)} = G(z)$$

The pulse transfer function is defined as the ratio of the *z*-transform of the output of a linear Time Invariant (LTI) system to the *z*-transform of its input, when the initial conditions are zero.

Example:

A unit step signal is applied to the following system. **Calculate** and **draw** the output response of the system, assuming a sampling period of T = 1 s.



For this system we can write:

$$Y(z) = G(z)u(z)$$

The z-transform of a unit-step function is

$$u(z)=\frac{z}{z-1}$$

the z-transform of G(s) is:

$$G(z) = \mathscr{Z}{G(s)} = \mathscr{Z}{\left\{\frac{1}{s+1}\right\}} = \frac{z}{z-e^{-T}}$$

Thus, the output is given by

$$Y(z) = u(z)G(z) = \frac{z}{z-1}\frac{z}{z-e^{-T}} = \frac{z^2}{(z-1)(z-e^{-T})}$$

Since T = 1 sec and $e^{-1} = 0.368$

Chapter Two: Pulse Transfer Function

Dr. Ahmed Mustafa Hussein

Electrical Engineering Department Dr. Ahmed Mustafa Hussein

$$Y(z) = \frac{z^2}{(z-1)(z-0.368)}$$

The output response can be obtained by finding the inverse z-transform of

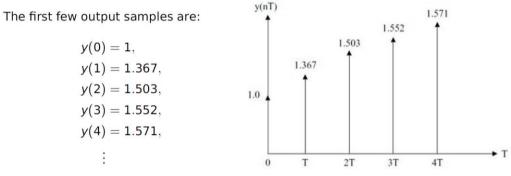
Y(z). Using partial fractions,

$$\frac{Y(z)}{z} = \frac{A}{z-1} + \frac{B}{z-0.368} = \frac{1.582}{z-1} - \frac{0.582}{z-0.368}$$

 $Y(z) = \frac{1.582z}{z-1} - \frac{0.582z}{z-0.368}$

From the z-transform tables we find

$$y(k) = 1.582 - 0.582 (0.368)^{k}$$



It is important to know, if there are samplers between blocks as shown in Fig. 3, then the pulse transfer function of the two blocks can be combined as:

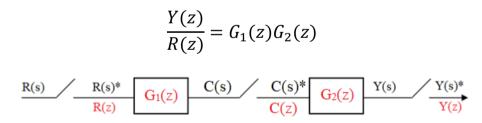


Fig. 3 Cascaded blocks in digital system

If the sampler between blocks is removed as shown in Fig. 4, then the pulse transfer function of the two blocks can be combined as:

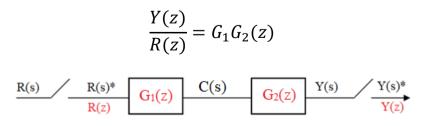


Fig. 4 Two blocks without sampler in between

Chapter Two: Pulse Transfer Function Dr. Ahmed Mustafa Hussein

Electrical Engineering Department Dr. Ahmed Mustafa Hussein

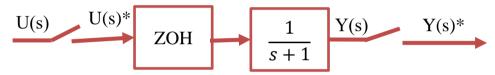
Both transfer functions are different.

 $G_1(z)G_2(z)\neq G_1G_2(z)$

Note that the presence of samplers complicates the *algebra* of block diagrams, since the existence and expression of any input-output function depend on the number and location of the samplers.

Example:

The system 1/(S+1) is preceded by a ZOH. What will the system output be if the applied input is a unit step, assuming a sampling period of T = 1 s.



The transfer function of the ZOH is:

$$G_{ZOH}(s) = G_1(s) = \frac{1 - e^{-Ts}}{s}$$

For this system, we can write:

$$Y(z) = G_{ZOH}G_2(z)u(z), \quad G_{ZOH}G_2(s) = \frac{1 - e^{-Ts}}{s} \frac{1}{s+1}$$

Using partial fractional expansion we can write

$$G_{ZOH}G_2(s) = (1-e^{-Ts})\left(rac{1}{s}-rac{1}{s+1}
ight)$$

From Z-transform tables:

$$G_{ZOH}G_2(z) = (1 - z^{-1})\left(\frac{z}{z - 1} - \frac{z}{z - e^{-1}}\right) = \frac{0.63}{z - 0.37}$$

Using partial fraction method, we can write

$$\frac{Y(z)}{z} = \frac{1}{z-1} - \frac{1}{z-0.37}$$
$$y(k) = 1 - (0.37)^{k}$$

Example:

4

Consider the cascaded blocks with

Chapter Two: Pulse Transfer Function

Electrical Engineering Department Dr. Ahmed Mustafa Hussein

$$H_1(s) = \frac{1}{S+2}$$
 and $H_2(s) = \frac{2}{S+4}$

Calculate the equivalent pulse T.F in the following two cases:

a) Both blocks are connected directly,

b) Both blocks are separated by a sampler

In case (a), the equivalent pulse T.F is given as $H_1H_2(Z)$

$$H(S) = H_1(s)H_2(s) = \frac{2}{(S+2)(S+4)} = \frac{1}{S+2} - \frac{1}{S+4}$$
$$h(t) = e^{-2t} - e^{-4t}$$
$$h(kT) = e^{-2kT} - e^{-4kT} \quad k = 0, 1, 2, 3, \dots$$

Taking Z Transform:

$$H(Z) = \frac{Z}{Z - e^{-2T}} - \frac{Z}{Z - e^{-4T}} = \frac{Z(e^{-2T} - e^{-4T})}{(Z - e^{-2T})(Z - e^{-4T})}$$

In case (b), the equivalent pulse T.F is given as $H_1(Z) H_2(Z)$

$$H_{1}(s) = \frac{1}{S+2} \rightarrow h_{1}(t) = e^{-2t} \rightarrow H_{1}(Z) = \frac{Z}{Z - e^{-2T}}$$

$$H_{2}(s) = \frac{2}{S+4} \rightarrow h_{2}(t) = 2e^{-4t} \rightarrow H_{2}(Z) = \frac{2Z}{Z - e^{-4T}}$$

$$H(Z) = \frac{Z}{Z - e^{-2T}} \frac{2Z}{Z - e^{-4T}} = \frac{2Z^{2}}{(Z - e^{-2T})(Z - e^{-4T})}$$

Using partial fractions:

$$\frac{H(Z)}{Z} = \frac{2Z}{(Z - e^{-2T})(Z - e^{-4T})} = \frac{A}{(Z - e^{-2T})} + \frac{B}{(Z - e^{-4T})}$$
$$2Z = A(Z - e^{-4T}) + B(Z - e^{-2T})$$
At $Z = e^{-2T} \rightarrow 2e^{-2T} = A(e^{-2T} - e^{-4T}) \rightarrow A = 2e^{-2T} / (e^{-2T} - e^{-4T})$ At $Z = e^{-4T} \rightarrow 2e^{-4T} = B(e^{-4T} - e^{-2T}) \rightarrow B = 2e^{-4T} / (e^{-4T} - e^{-2T})$
$$\frac{H(Z)}{Z} = \frac{2e^{-2T}}{(e^{-2T} - e^{-4T})(Z - e^{-2T})} + \frac{2e^{-4T}}{(e^{-4T} - e^{-2T})(Z - e^{-4T})}$$

$$H(z) = \frac{2}{e^{-2T} - e^{-4T}} \left[\frac{e^{-2T}z}{z - e^{-2T}} - \frac{e^{-4T}z}{z - e^{-4T}} \right]$$

Chapter Two: Pulse Transfer Function

Dr. Ahmed Mustafa Hussein

Electrical Engineering Department Dr. Ahmed Mustafa Hussein

Taking inverse Z transform

$$h(kT) = \frac{2}{e^{-2T} - e^{-4T}} \left[e^{-2T} e^{-2kT} - e^{-4T} e^{-4kT} \right]$$
$$= \frac{2}{e^{-2T} - e^{-4T}} \left[e^{-2(k+1)T} - e^{-4(k+1)T} \right], \quad k = 0, 1, 2, \dots$$

The above example clearly shows the effect of placing a sampler between analog blocks on the pulse transfer function.

Consider the control system shown in Fig. 5, the relation between input and output is given as:

$$Y(s) = R(s).G(s)$$
$$Y(s)^* = (RG(s))^* \to Y(z) = RG(z)$$
$$\underbrace{R(s)}_{G(s)} \underbrace{Y(s)}_{Y(z)} \underbrace{Y(s)^*}_{Y(z)}$$

Fig. 5 open-loop system with one sampler

Therefore, the pulse T.F. is not defined, but we can calculate the system response only.

2. Pulse Transfer Function for Closed-Loop Systems

Consider the closed-loop system with samplers indicated as shown in Fig. 6

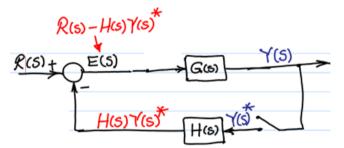


Fig. 6, closed-loop system with sampler at feedback

To obtain the pulse T.F, we assume the sampler output is $Y(s)^*$

$$Y(s) = G(s)E(s)=G(s)[R(s) - H(s)Y(s)^*]$$

 $E(s) = R(s) - H(s)Y(s)^*$

$$Y(s) = G(s) R(s) - G(s)H(s)Y(s)^*$$

6

Chapter Two: Pulse Transfer Function

Electrical Engineering Department Dr. Ahmed Mustafa Hussein

$$Y(s) = G(s) R(s) - G(s)H(s)Y(s)^*$$
$$Y(s)^* = RG(s)^* - GH(s)^*Y(s)^*$$
$$Y(z) = RG(z) - GH(z)Y(z)$$
$$Y(z)[1 + GH(z)] = RG(z)$$
$$Y(z) = \frac{RG(z)}{1 + GH(z)}$$

It is clear that we can obtain the system response Y(z) but we can NOT obtain the pulse transfer function.

To solve this problem, a sampler must be added before the summing point as shown in Fig. 7.

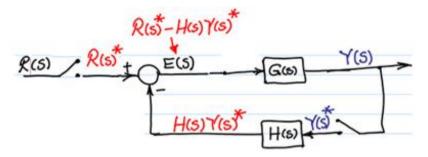


Fig. 7 closed-loop system with sampler at feedback and sampler at input In that case the pulse T.F. is

$$\frac{Y(z)}{R(z)} = \frac{G(z)}{1 + GH(z)}$$

Consider the discrete control system with two samplers shown in Fig. 8

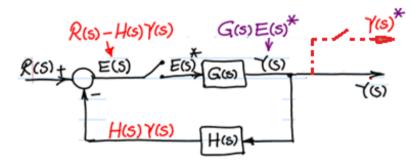


Fig. 8, closed-loop system with sampler at error signal

To obtain the pulse T.F, we assume the sampler output is $E(s)^*$

 $\mathbf{E}(\mathbf{s}) = \mathbf{R}(\mathbf{s}) - \mathbf{H}(\mathbf{s})\mathbf{Y}(\mathbf{s})$

7

Chapter Two: Pulse Transfer Function

Electrical Engineering Department Dr. Ahmed Mustafa Hussein

$$E(s) = R(s) - H(s)G(s)E(s)^{*}$$
$$E(s)^{*} = R(s)^{*} - GH(s)^{*} E(s)^{*}$$
$$E(s)^{*}[1+GH(s)^{*}] = R(s)^{*}$$
$$E(s)^{*} = \frac{R(s)^{*}}{1+GH(s)^{*}}$$

As the sampled error signal $E(s)^*$ multiplied by $G(s)^*$ this gives $Y(s)^*$ [$Y(s)^*=G(s)^*E(s)^*$] (dashed line)

$$Y(s)^{*} = \frac{G(s)^{*}R(s)^{*}}{1 + GH(s)^{*}}$$

The pulse T.F. is given by:

$$\frac{Y(s)^{*}}{R(s)^{*}} = \frac{G(s)^{*}}{1 + GH(s)^{*}}$$
$$\frac{Y(z)}{R(z)} = \frac{G(z)}{1 + GH(z)}$$

We can obtain the same pulse T.F with the configuration shown in Fig. 9

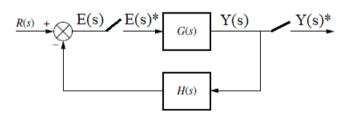
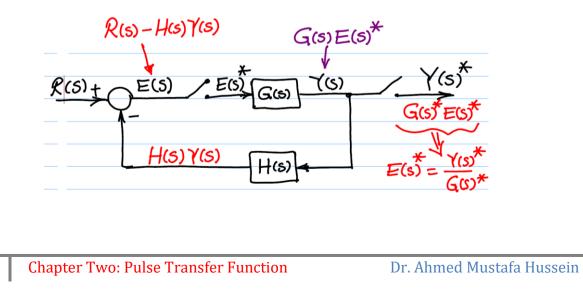


Fig. 9 closed-loop system with two samplers

To obtain the pulse T.F, we follow the steps:



Electrical Engineering Department Dr. Ahmed Mustafa Hussein

Introduce a variable, with *name* E(s), at the input of the first sampler and a variable, with *name* $E(s)^*$, at the output of that sampler. Moreover, introduce a variable, with *name* Y(s), at the input of the second sampler and a variable, with *name* $Y(s)^*$, at the output of that sampler.

$$\mathbf{E}(\mathbf{s}) = \mathbf{R}(\mathbf{s}) - \mathbf{H}(\mathbf{s})\mathbf{Y}(\mathbf{s})$$

But we know that Y(s)=E(s)*G(s), by substituting by this value in above equation;

$$E(s) = R(s) - H(s) G(s) E(s)^*$$
$$E(s)^* = R(s)^* - HG(s)^* E(s)^*$$
$$E(s)^*[1 + HG(s)^*] = R(s)^*$$
$$E(s)^* = \frac{R(s)^*}{1 + GH(s)^*}$$

Replace $E(s)^*$ by $Y(s)^*/G(s)^*$

$$\frac{Y(s)^{*}}{G(s)^{*}} = \frac{R(s)^{*}}{1 + GH(s)^{*}}$$

The pulse T.F. is given by:

$$\frac{Y(s)^{*}}{R(s)^{*}} = \frac{G(s)^{*}}{1 + GH(s)^{*}}$$
$$\frac{Y(z)}{R(z)} = \frac{G(z)}{1 + GH(z)}$$

Consider the closed-loop system with samplers indicated as shown in Fig. 10

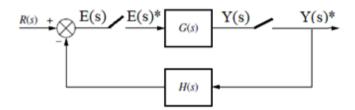
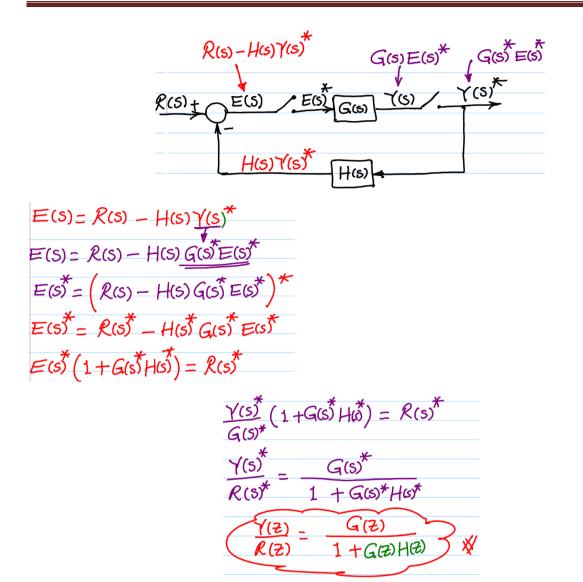


Fig. 10 closed-loop system

Dr. Ahmed Mustafa Hussein

Electrical Engineering Department Dr. Ahmed Mustafa Hussein



We can obtain the same pulse T.F with the configuration shown in Fig. 11

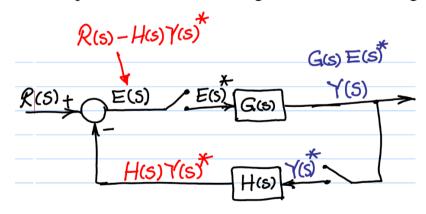


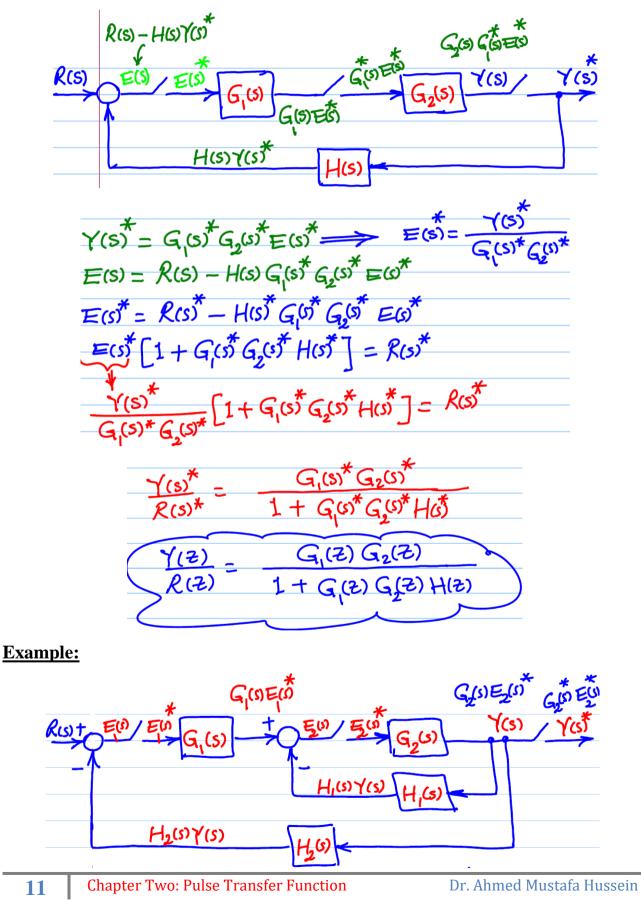
Fig. 11 Closed-loop discrete system

$$\frac{Y(z)}{R(z)} = \frac{G(z)}{1 + G(z)H(z)}$$

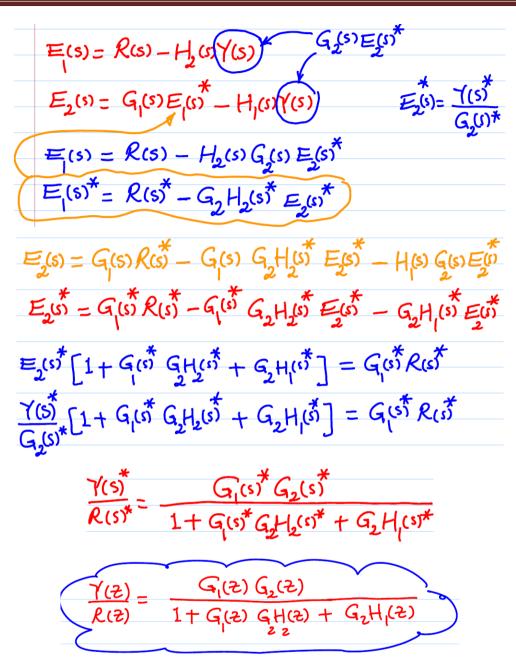
Chapter Two: Pulse Transfer Function

Electrical Engineering Department Dr. Ahmed Mustafa Hussein

Example:

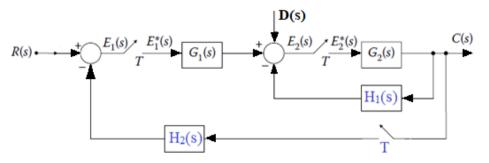


Electrical Engineering Department Dr. Ahmed Mustafa Hussein



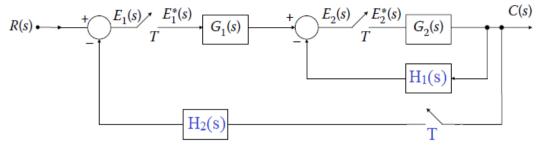
Example:

For MISO Linear Time Invariant Digital (LTID) control system shown below, calculate the pulse transfer function.



Electrical Engineering Department Dr. Ahmed Mustafa Hussein

First, we assume that D(s) = 0;



forward paths: $P_1 = R(z) G_1(z) G_2(z)$

Individual loops:

$$\begin{split} L_{1} &= -G_{2} \ H_{1} \ (z) \\ L_{2} &= - \ G_{1}(z) \ G_{2}(z) \ H_{2} \ (z) \end{split}$$

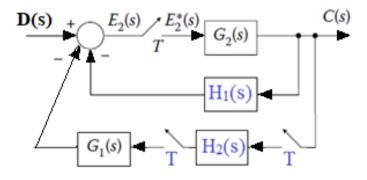
The system response is:

$$Y(z) = \frac{P_1}{1 - (L_1 + L_2)}$$
$$Y(z) = \frac{R(z)G_1(z)G_2(z)}{1 + G_2H_1(z) + G_1(z)G_2(z)H_2(z)}$$

The pulse T.F. is:

$$\frac{Y(z)}{R(z)} = \frac{G_1(z)G_2(z)}{1 + G_2H_1(z) + G_1(z)G_2(z)H_2(z)}$$

Second, we assume that R(s) = 0;



forward paths: $P_1 = D(z) G_2(z)$

Individual loops:

Chapter Two: Pulse Transfer Function

Dr. Ahmed Mustafa Hussein

Electrical Engineering Department Dr. Ahmed Mustafa Hussein

$$\begin{split} & L_1 = -G_2 \; H_1 \; (z) \\ & L_2 = - \; G_1(z) \; G_2(z) \; H_2 \; (z) \end{split}$$

The system response is:

$$Y(z) = \frac{P_1}{1 - (L_1 + L_2)}$$
$$Y(z) = \frac{D(z)G_2(z)}{1 + G_2H_1(z) + G_1(z)G_2(z)H_2(z)}$$

The pulse T.F. is:

$$\frac{Y(z)}{D(z)} = \frac{G_2(z)}{1 + G_2H_1(z) + G_1(z)G_2(z)H_2(z)}$$
$$Y(z) = \frac{G_1(z)G_2(z)R(z)}{1 + G_2H_1(z) + G_1(z)G_2(z)H_2(z)} + \frac{G_2(z)D(z)}{1 + G_2H_1(z) + G_1(z)G_2(z)H_2(z)}$$
$$Y(z) = \frac{G_2(z)\{G_1(z)R(z) + D(z)\}}{1 + G_2H_1(z) + G_1(z)G_2(z)H_2(z)}$$

Example:

Obtain the pulse T.F from the following difference equation:

y(k) - 0.5y(k - 1) = 2x(k)

Taking Z-transform for both sides:

$$Y(z) - 0.5Z^{-1}Y(z) = 2X(z)$$
$$Y(z)(1 - 0.5Z^{-1}) = 2X(z)$$
$$\frac{Y(z)}{X(z)} = \frac{2}{1 - 0.5Z^{-1}} = \frac{2Z}{Z - 0.5}$$

Example:

Obtain the pulse T.F from the following difference equation:

$$y(k) + 2y(k-1) - y(k-2) = 2x(k) - x(k-1) + 2x(k-2)$$

Taking Z-transform for both sides:

$$Y(z) + 2Z^{-1}Y(z) - Z^{-2}Y(z) = 2X(z) - Z^{-1}X(z) + 2Z^{-2}X(z)$$
$$Y(z)(1 + 2Z^{-1} - Z^{-2}) = X(z)(2 - Z^{-1} + 2Z^{-2})$$

Electrical Engineering Department Dr. Ahmed Mustafa Hussein

$$\frac{Y(z)}{X(z)} = \frac{2 - Z^{-1} + 2Z^{-2}}{1 + 2Z^{-1} - Z^{-2}} = \frac{2Z^2 - Z + 2}{Z^2 + 2Z - 1}$$

3. Matlab Command

The Matlab command to obtain the pulse T.F. from analog T.F. is:

>> g = tf(num; den); % continuous TF >> gd = c2d(g, T, 'zoh') % digital TF using zero order hold and sampling time T

3. Characteristic Equation

Characteristics equation plays an important role in the study of linear systems. As said earlier, an nth order LTI discrete data system can be represented by an nth order difference equation,

$$\begin{split} c(k+n) + a_{n-1}c(k+n-1) + a_{n-2}c(k+n-2) + ... + a_1c(k+1) + a_0c(k) = b_mr(k+m) + \\ b_{m-1}r(k+m-1) + ... + b_0r(k) \end{split}$$

where r(k) and c(k) denote input and output sequences respectively. The input output relation can be obtained by taking Z-transformation on both sides, with zero initial conditions, as

$$\frac{C(z)}{R(z)} = \frac{b_m z^m + b_{m-1} z^{m-1} + \dots + b_0}{z^n + b_{n-1} z^{n-1} + \dots + a_1 z + a_0}$$

The characteristics equation is obtained by equating the denominator of the pulse transfer function to 0, as

$$z^n + b_{n-1}z^{n-1} + \dots + a_1z + a_0 = 0$$

In a causal system, the output does not precede the input. In other words, in a causal system, the output depends only on the past and present inputs, not on the future ones.
The transfer function of a causal system is physically realizable, i.e., the system can be realized by using physical elements.

• For a causal discrete data system, the power series expansion of its transfer function must not contain any positive power in z. Positive power in z indicates prediction. Therefore, in the transfer function (given above), *n* must be greater than or equal to *m*. $m = n \Rightarrow$ proper transfer function $m < n \Rightarrow$ strictly proper Transfer Function

References:

- Anastasia Veloni, Nikolaos Miridakis. Digital Control Systems: Theoretical Problems and Simulation Tools, CRC Press, Taylor & Francis Group, 2018
- [2] Bosch, R. GmbH. Automotive Electrics and Automotive Electronics, 5th ed. John Wiley & Sons Ltd., UK, 2007.
- [3] Franklin, G. F., Powell, J. D., and Emami-Naeini, A. Feedback Control of Dynamic Systems. Addison-Wesley, Reading, MA, 1986.
- [4] Dorf, R. C. Modern Control Systems, 5th ed. Addison-Wesley, Reading, MA, 1989.
- [5] Nise, N. S. Control System Engineering, 6th ed. John Wiley & Sons Ltd., UK, 2011.
- [6] Ogata, K. Modern Control Engineering, 5th ed ed. Prentice Hall, Upper Saddle River, NJ, 2010.